=Pi-L

Exercise VI, Algorithms 2024-2025

These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. There are many problems on this set, solve as many as you can and ask
for help if you get stuck for too long. Problems marked * are more difficult but also more
fun ).

For more exercises on dynamic programming and video explanations of solutions, see

http:/ /people.csail.mit.edu/bdean,/6.046 /dp/

Solve New Problems Using Dynamic Programming

(25 pts) Restaurant placement. Justin Bieber has surprisingly decided to open a series of
restaurants along the highway between Geneva and Bern. The n possible locations are along a
straight line, and the distances of these locations from the start of the highway in Geneva are,
in kilometers and in arbitrary order, mi, ma,..., my,. The constraints are as follows:

e At each location, Justin may open at most one restaurant. The expected profit from
opening a restaurant at location ¢ is p;, where p; >0 and ¢ =1,2,...,n.

e Any two restaurants should be at least k kilometers apart, where k is a positive integer.

As Justin is not famous for his algorithmic skills, he needs your help to find an optimal solution,
i.e., design and analyze an efficient algorithm to compute the maximum expected total profit
subject to the given constraints.

Solution: Let M be the array containing the distances of the restaurants from Geneva, in
increasing order; we can compute this array in O(nlogn) time (e.g. using mergesort, heap-
sort, etc.), and let p be the array whose i-th element contains the profit we gain by opening
a restaurant at position M[i]. Now consider the opening of the leftmost restaurant: since it is
the leftmost restaurant, there will be no restaurant closer to Geneva. Furthermore, opening this
restaurant restricts the set of locations where we can open other restaurants, since restaurants
must be at least k kilometers apart. Thus, given that the leftmost restaurant is opened at a
particular location i, we can use the following (recursive) strategy to open the most profitable
set of restaurants. Let c[i] be the entry in array ¢ containing the optimal profit for the possible
set of restaurant locations whose leftmost restaurant is opened at location M[i]. Formally we
have:
cli] = plil + i<j<n MU Mk

We implement this recursive formulation efficiently using the Bottom-up approach:

Page 1 (of 5)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson



RESTAURANTS(M, p)

1. ¢[n] + p[n]

2. fori=ntol

3. <0

4 for j=i+1ton

5 if c[j] > l and M[j] > M[i] + k

6. [ + c[j]

7. end if

8 end for

9 cli] < pli] +1

10. end for

11. return max c[i]
1<i<n

Let us analyze the running time of the above algorithm: the two nested loops will cause
lines 5-7 to be executed ©(n?) times. Line 11 requires ©(n) operations, while sorting requires
O(nlogn) operations. Hence, the total running time is ©(n?).

Note that we can design an algorithm with O(n log n) running time too. As a preprocessing
step, we sort the possible locations according to their distances, then, we calculate the nearest
possible location on the right of m; which is at least k kilometers away. We denote such location
for each i by b[i]. If no such location exists, we set b[i] = n + 1. The algorithm below returns
the array b in O(n) time.

LEFTPOSSIBLE(M)

1. pointer =1

2. fori=1toi=n

3. while pointer <= n+1 and M [pointer| — M[i] < k
4. pointer < pointer + 1

5. bli] < pointer

6. return b

Let d[i] be the maximum profit that can be achieved from opening restaurants from m; to
my,. At each position, we can either open a restaurant or keep it closed. If we open a restaurant,
our profit would be p[i] + d[b[i]]. If we do not open a restaurant in m;, then our profit would be
d[i + 1]. Here we implement this algorithm:

FASTRESTAURANT(M, p)
L.dln+1] <0

2. b = LeftPossible(M)

3. fori=ntoi=1

4 d[i] = max (d[i + 1], d[b[i]] + pli])
5. return b[1]

The total running time for this algorithm is O(n log n) + ©(n).

(half *, Problem 15-1) Longest simple path in a directed graph.

Suppose that we are given a directed acyclic graph G = (V, E) with real valued edge weights
and two distinguished vertices s and ¢. Describe a dynamic programming approach for finding a
longest weighted simple path from s to . What does the subproblem graph look like? What is
the efficiency of your algorithm?

Page 2 (of 5)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson



Solution: First of all, note that all paths in DAG(directed acyclic graph) are simple. If there
are two parts of the path then they cannot visit the same vertex, except when this vertex is the
end and the beginning of the first and the second subpaths respectively.

The following observation gives an idea to the algorithm. Let p be the longest path from s to
t and let v be the next vertex on this path after s. Then the longest path p’ from v to t is a part
of p. If not, let p” be longer than p’, then the path from s, which goes to v and then continues
with p”, is the path from s to ¢, which is longer than p.

Let dist[s] denote the weight of the longest path from s to t.

dist]s| 0 if s=t,
ist[s] =
maz (s ,)ep(w(s,v) + dist[v]) otherwise.

To solve the problem the following algorithm can be used. next is an array, which stores the
next vertex on the longest path. Also, if there is a value, then the subproblem for this vertex
has been already solved. Before it we have to initialise both arrays: dist with 0 and next with
null values.

LONGEST-PATH(G,S,T, DIST, NEXT)
if s ==
dist[s] =0
return (dist, next)
elseif next[s| # null
return (dist, next)
else
for each vertex v € G.Adj[s] (adjacent vertex)
(dist,next) = LONGEST-PATH(G,V,T,DIST,NEXT)
if w(s,v) + dist[v] > dist]s]
10 dist[s] = w(s,v) + dist[v]
next[s] = v
12 return (dist, next)

© 00 N O Ot W N~

—
—

At the end dist[s] stores the weight of the longest path from s to ¢. To print the path we
need only to go by the links of the array next starting from s until we reach t.

The running time of this algorithm is O(V) to initialize both arrays, O(FE) for the Longest —
Path part (we call it once for each edge of the vertex, thus we call it no more than E times) and
O(V) to restore the path. Thus, in sum it requires O(V + E).

(*) Knapsack Problem Suppose that you are going on a beautiful hike in the Swiss Alps. As
always, you are faced with the following problem: your knapsack is too small to fit all the items
that you wish to bring with you. As items are of different importances and have different sizes,
you would like to maximize the total value of the items that you can bring with you. Formally,
we can define the “packing” problem as follows:

INPUT: A knapsack of capacity C' and n items where item i = 1,2, ..., n has value v; > 0 and
size s; > 0.

OUTPUT: A subset of items S that maximizes ) ;. g v; (the total value) subject to > ;g 5; < C
(the total size of the packed items is at most the capacity).

3a  (The Fractional Knapsack Problem) Suppose that your items are divisible, i.e., you can
pack a fraction f € [0,1] of an item 7 and in that case it will give you a profit of f -v; and

Page 3 (of 5)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson



occupy a space of f-s; in the knapsack. Give a greedy algorithm for this case that runs in
time O(nlogn).

Solution: In Fractional Knapsack Problem we can pack a part of an item. This gives a simple
greedy solution. To maximize the total value of the knapsack we simply need to take items,
which value of a unit of weight are the biggest ones. Let rank each item 4 by the value of the
unit of weight v;/s; and fill in the knapsack with items which have greater rank until there are
no items left or a knapsack is full.

FRACTIONAL-KNAPSACK(V,c,C)

Sort items by v;/s;. Assume that v;/s; > v;41/8;41 for all i
load =0
1 =1

while i < n and load < C
if C —load > s;
take the whole item ¢ and load = load + s;
else take C' — load/s; of item i and load = C
i=i+1

0 3 O T W N~

Time of the algorithm is O(n lg n) for sorting and O(n) for the second part of the algorithm.

3b  Show that the greedy algorithm fails when the items are indivisible. How bad can the profit
of the solution returned by the greedy algorithm be compared to an optimal solution?

Solution: In Knapsack Problem (non-fractional) greedy algorithm can leave a lot of empty space
in the knapsack. Assume there are 2 items: first one has a size 1 and a cost v, and the second
one with size C and a cost C'* (v —1). The greedy algorithm will choose the first item and there
will not be enough space for the second one. The optimal solution is to take the second item
(here it is assumed that v and C are big).

In the worst case the greedy algorithm leaves practically the whole knapsack empty and it
can be up to C times worse than the optimal algorithm.

3c  Design a dynamic programming algorithm to solve the Knapsack Problem. Your algorithm
should run in time O(nC).

Solution: We can recursively define the value of an optimal solution by the following formula:

0 ifi=0o0rs=0,
c(i,s) =< c(i —1,5) if s; > s,

max(v; + ¢(i — 1,5 — s;),¢(i — 1,s)) otherwise,

where ¢(i, s) is an optimal solution for the set of items {1...i} and the size of a knapsack s. The
last case says that the optimal solution can either take item ¢ and items from the optimal solution
c(i — 1,5 — s;), or don’t take item ¢, and in this case it is the same as the optimal solution for
c(i —1,s).

The algorithm fills the table ¢[0..n,0..C], each cell stores the best value. The table is filled
row by row. At the end the cell ¢[n, C| has the optimal value for the problem. To find the set of
items we need to take, we trace this table back from ¢[n, C]. If ¢[i, s] = ¢[i — 1, s] then we do not
take item 4 and continue tracing from c[i — 1,s]. Otherwise we take item ¢ and continue from
cli —1,s — s;]. Here is the algorithm:

Page 4 (of 5)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson



DyNAaMIC-KNAPSACK(N,V,s,C)

1 forj=0toC

2 cl0,7] =0

3 fori=1ton

4 cli,00=0

5 fori=1ton

6 for j=1to C

8 cli, j] = max(v; + cli — 1,7 — s4], c[i — 1, 7])
9 else c[i, j] = c[i — 1, j]
10 i=n

11 j=C

12 whilei >0

13 ifcli—1,5] # c[i, j]

14 print ¢

15 J=1J=5i

16 i=i—1

The algorithm takes O(nC') time to fill the table and ©(n) time to trace the solution.

Page 5 (of 5)

CS-250 Algorithms e Spring 2025
Alessandro Chiesa and Ola Svensson



